Ta có : \(P=\dfrac{a^2+b^2+c^2}{abc}\ge\dfrac{ab+bc+ca}{abc}=\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2}\)
=> Min P = 3/2 "=" khi a = b = c = 2
Ta có : \(P=\dfrac{a^2+b^2+c^2}{abc}\ge\dfrac{ab+bc+ca}{abc}=\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2}\)
=> Min P = 3/2 "=" khi a = b = c = 2
cho 3 so a,b,c>0 và a+b+c=1 Tim min A=(a^2+b^2+c^2)+(ab+bc+ca)/(a^2b+b^2c+c^2a)
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 + 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+ 4b + 1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 + 1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 + 2009/ab+bc+ac >=670
Bai1 : Tim max voi x thuoc [1;3]
F(x) = (x-1)(3-x)
G(x)=(2x-1)(3-x)
Bai2: cho a,b>0 thoa man 4/a+1/b=1
Tim min p=a+b
Bai3: cm Voi moi a>0 ta co a^2(1-2a)<=1/27
Bai4: cho a,b,c >0 tm ab+bc+ca=3
Cm a^3+b^3+c^3>=3
Bai5: x,y,z>0 tm xyz=1
Cm x^2\1+y +y^2\1+z + z^2\1+x
cho 3 so a,b,c duong chung minh:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\)
cho a,b,c lớn hơn hoặc bằng 0 và thỏa mãn ab+bc+ac=1
tim Min P= 1/(a+b) +1/(b+c) + 1/(a+c)
cho 3 so a,b,c duong va a+b+c=1 CM\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{1}{4}\)