Ta có \(1^2=\left(\sqrt{a}\sqrt{b}+\sqrt{b}\sqrt{c}+\sqrt{c}\sqrt{a}\right)^2\le\left(a+b+c\right)\left(b+c+a\right)\)
\(\Rightarrow\left(a+b+c\right)^2\ge1\Rightarrow a+b+c\ge1\)
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1}{2}\left(a+b+c\right)\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)