Ôn tập phương trình bậc hai một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tuan anh le

\(\frac{a+b+c}{\sqrt{a\left(a+3b\right)+\sqrt{b\left(b+3c\right)}+\sqrt{c\left(c+3c\right)}}}\ge\frac{1}{2}\)

Khôi Bùi
25 tháng 3 2019 lúc 13:47

Ta có : \(\frac{a+b+c}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+3c\right)}+\sqrt{c\left(c+3a\right)}}=\frac{2\left(a+b+c\right)}{\sqrt{4a\left(a+3b\right)+\sqrt{4b\left(b+3c\right)}+\sqrt{4c\left(c+3a\right)}}}\)

Áp dụng BĐT Cauchy , ta có :

\(\frac{2\left(a+b+c\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3c\right)}+\sqrt{4c\left(c+3a\right)}}\le\frac{2\left(a+b+c\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3c}{2}+\frac{4c+c+3a}{2}}=\frac{2\left(a+b+c\right)}{4\left(a+b+c\right)}=\frac{1}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)


Các câu hỏi tương tự
Nguyễn Bùi Đại Hiệp
Xem chi tiết
tuan anh le
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Lê Minh Tuấn
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
G.Dr
Xem chi tiết
Nga Phạm
Xem chi tiết