cho a, b, c la cac so duong thoa man a\(a^2+b^2+c^2=3\) . Chung minh rang : \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}>=3\)
cho a,b,c la ba so thuc duong thoa man dieu kien a+b+c=1
chung minh rang P=\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
cho a;b;c duong thoa man a^2+b^2+c^2=1
c/m \(\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}>=\frac{3\sqrt{3}}{2}\)
cho a,b,c la cac so thuc duong thoa man a+b+c=3. tim gia tri nho nhat cua
P=\(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\)
Cho a,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Cho a,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
cho cac so a,b,c duong thoa man ab+bc+ca=1 chung minh : \(p=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
Choa,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
cho ca so a,b,c duong thoa man ab+bc+ca =1 chung minh \(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{1}{4}\)