(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))>=\(3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)
Do đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)>=\(\frac{9}{a+b+c}=9\)(không phải chỉ >=1 đâu bạn nhé)
(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))>=\(3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)
Do đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)>=\(\frac{9}{a+b+c}=9\)(không phải chỉ >=1 đâu bạn nhé)
Cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3\)
Cho các số dương a,b,c thỏa mãn a+b+c=1. Chứng minh:
\(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge1\)
Bài 1: Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sqrt{\frac{a+b+4c}{a+b}}+\sqrt{\frac{b+c+4a}{b+c}}+\sqrt{\frac{c+a+4b}{c+a}}\ge3\sqrt{3}.\)
Bài 2:Cho các số thực dương a,b,c thoả mãn abc=1. Chứng minh rằng:
\(\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}+\sqrt[3]{\left(\frac{2b}{bc+1}\right)^2}+\sqrt[3]{\left(\frac{2c}{ca+1}\right)^2}\ge3.\)
Giúp mình với! Mình cần gấp.
Cho a, b, c là các số thực dương thõa mãn \(\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1}\ge1\).Chứng minh rằng: \(\frac{1}{6a+1}+\frac{1}{6b+1}+\frac{1}{6c+1}\ge\frac{3}{7}\)
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 3 Chứng minh rằng : \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)
Bài 1 : Tìm các số nguyên x,y thoả mãn x^3 + 2*x^2 +3*x +2 = y
Bài 2 :
a, Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và a + b + c = abc chứng minh \(\frac{1}{^{a^2}}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
b, Cho a,b,c là ba số thực dương thỏa mãn a + b + c = 3 . Chứng minh rằng
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\)
Cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}>3\)
xem giúp tớ giải đúng không với
Cho 3 số dương a, b, c thoả mãn: abc = 1
Tìm GTNN của \(P=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\)
cho các dố dương a, b, c thõa mãn a+b+c=1. CM:
\(\frac{1}{1+b-a}+\frac{1}{1+c-b}+\frac{1}{1+ac}\ge1\)