Cho a,b,c>0; a+b+c=3. Tìm giá trị nhỏ nhất: \(P=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{a^2+b^2+c^2}\)
Cho các số không âm a,b,c thỏa mãn không có hai số nào đồng thời bằng 0 và a2+b2+c2=2(ab+bc+ac). Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\)
Bài 1:Cho a,b,c>0. Chứng minh rằng:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
Bài 2: Cho 3 số dương a,b,c. Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)+a^2+b^2+c^2-ab-bc-ca+2020\)
cho 3 số thực dương a b c thỏa mãn a+b+c=3.Tìm giá trị nhỏ nhất của biểu thức:
P=\(\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)
Cho các số dương a,b,c thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức:
A = \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho các số thực a,b,c thỏa mãn 5(a2+b2+c2)=6(ab+ac+bc). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức P=(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))
Cho a,b,c là các số dương và \(a^2+b^2+c^2=1\) Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\)
Cho 3 số dương a, b, c. Tìm giá trị nhỏ nhất của biểu thức:
\(P=a^2+b^2+c^2+2abc+\frac{18}{ab+bc+ac}\)
Cho các số dương a,b,c thảo mãn điều kiện:a+b+c=\(2013\sqrt{27}\) .Tìm giá trị nhỏ nhất của biểu thức:
P=\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)