Cho a,b,c>0 thỏa mãn a+2b+3c=1
CMR: \(\frac{2ab}{a^2+4b^2}+\frac{6bc}{4b^2+9c^2}+\frac{3ac}{9c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\right)\ge\frac{15}{4}\)
Cho a,b,c thỏa (a+2b)(2b+3c)(3c+a)#0 và
\(\frac{a^2}{a+2b}+\frac{4b^2}{2a+3b}+\frac{9c^2}{3c+a}=\frac{a^2}{2b+3c}+\frac{4b^2}{3c+a}+\frac{9c^2}{a+2b}\)
chứng minh rằng \(\frac{a}{6}=\frac{b}{3}=\frac{c}{2}\).mấy a giải giúp em cái
Chứng minh rằng:\(\frac{a}{1+a^2}+\frac{b}{1+4b^2}+\frac{c}{1+9c^2}=\frac{abc\left(5a+16b+27c\right)}{\left(a+2b\right)\left(a+3c\right)\left(2b+3c\right)}\)
biết các số a, b, c thỏa mãn \(\frac{1}{bc}+\frac{2}{ac}+\frac{3}{ab}=6\)và các biểu thức có nghĩa
Cho a , b , c là 3 số thực khác 0 , thỏa mãn : \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Cho a,b,c thỏa mãn a^2 + 2b^2 + 3c^2 =6. CMR: a + 2b + 3c <=6
cho các số a, b, c, d thỏa mãn 3a +2b -c -d=1; 2a+2b-c+2d=2; 4a- 2b- 3c+d=3; 8a+b-6c+d=4. tính giá trị của a+b+c+d
cho a,b,c khác 0 thỏa mãn a^3+b^3+c^3=3abc
tính K=(1+\(\frac{a}{b}\)).(1+\(\frac{b}{c}\)).(1+\(\frac{c}{a}\))
cho a,b,c khác 0 thỏa mãn a^3+b^3+c^3=-3abc
Tính F=(1+\(\frac{a}{b}\)).(1-\(\frac{b}{c}\)).(1-\(\frac{c}{a}\))
cho a,b,c khác 0 thỏa mãn a^3+8b^3+27c^3=18abc
Tính H=(1+\(\frac{a}{2b}\)).(1-\(\frac{2b}{3c}\)).(1-\(\frac{3c}{a}\))
cho các số a;b;c;d thỏa mãn 3a+2b-d-c=1; 2a+2b-c+2d=2; 4a+2b-3c+d=3; 8a+b-6c+d=4
Tính a+b+c+d=...
(Các bạn giải gấp giùm mình nha)
Cho a,b,c,d thỏa mãn 3a+2b-c-d=1; 2a+2b-c-2d=2; 4a-2b-3c+d=3; 8a+b-6c+d=4 thì giá trị của a+b+c+d là bao nhiêu?