Cho a,b,c là 3 số khác nhau đôi một thỏa mãn \(\left(a+b+c\right)^2=a^2+b^2+c^2\). Tính \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Cho a,b,c là 3 số đôi một khác nhau thỏa mãn:\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
Tính giá trị của biểu thức P=\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Cho a,b,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn
a) \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
b) \(B=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
c) \(C=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Cho a ,b ,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Rút gọn các biểu thức sau :
A=\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
B=\(\frac{bc+1}{a^2+2bc}+\frac{ca+1}{b^2+2ac}+\frac{ab+1}{c^2+2ab}\)
C=\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
D=\(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
P/S : Sẵn tiện mọi người cho mình hỏi " Đều khác nhau đôi một " là sao ạ ? Mình đọc không hiểu rõ đề cho lắm
Cho a, b,c là ba số đôi một khác nhau thỏa mãn: \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
Tính giá trị của biểu thức: \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}\frac{c^2}{c^2+2ab}\)
cho a,b,c đôi một khác nhau và thỏa điều kiện \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
rút gọn biểu thức:\(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Cho a,b,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Rút gọn các biểu thức sau:
a)\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
b)\(N=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
c)\(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Cho 3 số a,b,c, đôi một khác nhau và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\).Rút gọn các biểu thức sau
a) \(N=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
b) \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
GIÚP MIK VỚI MIK ĐANG CẦN GẤP!
Cho a, b, c là các số đôi một khác nhau t/m \(\left(a+b+c\right)^2=a^2+b^2+c^2\). Tính \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\)