vì a+b+c = 2008 và 1/a + 1/b + 1/c = 1/2008 => 1/a + 1/ b + 1/c = 1/ (a+b+c)
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)=abc\)
=>(a+b+c)(bc+ac+ab) - abc = 0
=> abc + a(ac+ab) + (b+c)(bc+ac+ab) - abc = 0
=> a2(b+c) + (b+c)(bc+ac+ab) = 0 => (b+c)(a2 + bc + ac + ab) = 0 => (b+c)[a(a+c) + b(a+c)] = 0
=> (b+c)(a+b)(a+c) = 0 => b+c = 0 hoặc a+b = 0 hoặc a+c = 0
Nếu b+c = 0 => a = 2008
nếu a+ b = 0 => c = 2008
Nếu a+c = 0 => b = 2008
Vậy....
Trần Thị Loan : tại sao a+b+c = 2008 và 1/a+1/b+1/c = 1/2008 lại => 1/z+1/v+1/c = 1/(a+b+c) ????
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2008};a+b+c=2008\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc+ca+ac}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(bc+ca+ac\right)\left(a+b+c\right)=abc\)
\(\Rightarrow\left(bc+ca+ac\right)\left(a+b+c\right)-abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Nếu \(a+b=0\Rightarrow c=2008\)
\(b+c=0\Rightarrow a=2008\)
\(c+a=0\Rightarrow b=2008\)
Vậy 1 trong ba số bằng 2008