Cho tam giác ABC có AB>AC. Trên cạnh AB lấy điểm D sao cho BD = AC. Gọi M, N lần lượt là trung điểm của BC và AD. Các đường thẳng MN và AC cắt nhau tại K. Chứng minh rằng góc BNM = góc MKC (giải bài toán bằng 4 cách khác nhau)
Cho tam giác ABC cân tại A. Trên cạnh Ab lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Qua D và E kẻ các đường thẳng vuông góc với BC lần lượt tại M và N
a) CMR: BM=CN
b)Gọi I là giao điểm của BC và DE. CHứng minh DE=2DI
c)Kẻ AH vuông góc với BC tại H. Đường thẳng đi qua I và vuông góc với DE cắt AH tại K. Tính số đo góc DBK
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
cho tam giác ABC, AB<AC. Trên hai cạnh AB và AC lấy tương tự hai điểm D và E sao cho BD=CE. Gọi M,N,I lần lượt là trung điểm của BC,DE,CD. Đường thẳng MN cắt AB theo thứ thự tại P và Q. Chứng minh:
a, Tam giác MIN là tam giác cân
b, Tam giác APQ là tam giác cân
c, MN song song với đường phân giác góc A của tam giác ABC
Cho tam giác ABC(AB<AC). Trên AB,AC lấy tương ứng 2 điểm D và E sao cho BD=CE. Gọi M,N,I lần lượt là trung điểm của BC,DE,CD. Đường thẳng MN cắt AC và AB theo thứ tự tại Q và P. Chứng minh:
a) tam giác MIN cân
b)tam giác APQ cân
Cho tam giác ABC có AB< AC. Trên cạnh AB và AC lấy hai điểm D, E sao cho BD=CE. Gọi M, N, I lần lượt là trung điểm của BC, DE và CD. Đường thẳng MN cắt AB, AC theo thứ tự tại P và Q
a) CM: tam giác MỊN cân
b) CM: tam giác APQ cân
c) MN song song với đường phân giác của góc A
Cho tam giác ABC vuông tại A có BC=2AB. Trên cạnh AC lấy điểm D sao cho góc ABD=⅓ góc ABC. Trên cạnh AB lấy điểm E sao cho góc ACE= ⅓ góc ACB. BD cắt CE tại F. gọi I và K theo thứ tự là chân các đường vuông góc kẻ từ F đến BC và AC. Vẽ G và H sao cho I là trung điểm của FG, K là trung điểm của FH. Chứng minh rằng ba điểm H; D;G thẳng hàng
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
Cho tam giác ABC vuông tại A (AB>AC). Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Trên cạnh AB lấy điểm E sao cho AC=AE.
a) Chứng minh rằng: tam giác ABC = tam giác ADE.
b) Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM=tam giác ABN và AMN vuông cân.
c) Qua E kẻ AH vuông góc với BC tại H. Chứng minh rằng 3 điểm D,E,H thẳng hàng và CE vuông góc với BD