\(2^x=8^{y+1}< =>2^x=2^{3\left(y+1\right)}=>x=3\left(y+1\right)\) (1)
\(9^y=3^{x-9}< =>3^{2y}=3^{x-9}=>2y=x-9\) (2)
(1)&(2) => x=3y+3 và x=2y+9
trừ 2 vế, => 3y+3-2y-9=0 => y=6
và x=21
Xét 8y+1=(23)y+1=23y+3
Mà 8y+1=2x => x=3y+3
Xét 9y=(32)y=32y
Mà 9y=3x-9 => 2y=x-9
=> 2y=(3y+3)-9=3y-6
=> 3y-2y=6 => y=6
Có x=3y+3=3.6+3=21
Suy ra x.y=21.6=126
\(2^x=8^{y+1}\Leftrightarrow2^x=\left(2^3\right)^{y+1}\Leftrightarrow2^x=2^{3y+3}\Leftrightarrow x=3y+3\)
\(9^y=3^{x-9}\Leftrightarrow\left(3^2\right)^y=3^{x-9}\Leftrightarrow3^{2y}=3^{x-9}\Leftrightarrow2y=x-9\)
mà x=3y+3 => 2y=3y+3-9 => 2y=3y-6 => y=6 => x=3.6+3=21 => x+y=21+6=27