cmr: (a+2b-3c)^3+(b+2c-3a)^3+(c+2a-3b)^3=3.(a+2b-3c).(b+2c-3a).(c+2a-3b)
a) cho a>b>0 và 2( a² + b²)=5ab. tính P = 3a - b/ 2a+ b
b) cho a,b,c là độ dài 3 cạnh của 1 tam giác. cmr a²+2bc> b²+ c²
với a,b,c thuộc R thỏa mãn : (3a+3b+3c)^3=24+(3a+b-c)^3+(3b+c-a)^3+(3c+a-b)^3
CMR : (1+2a)(1+2b)(1+2c)=1
bài a) Cho a>b>0 và 2(a*a+b*b)=5ab. tinh P=(3a-b)/(2a+b)
b) cho a,b,c là độ dài 3 cạnh của 1 tam giác. cmr: a^2+2ab>b^2+c^c
cho a,b,c khác 0 sao cho a^3b^3+b^3c^3+c^3a^3=2a^2b^2c^2 . Tính M=(1+a/b)(1+b/c)(1+c/a)
cho a.b.c là số đo 3 cạnh của 1 tam giác . CMR
\(a^2b+b^2c+c^2a+a^2c+c^2b+b^2a-a^3-b^3-c^3>0\)
CMR:
a, (a+b)3 + (a+b) = 2a.(a2+3a2)
b, nếu: a+b+c=0 thì a3+b3+c3=3.a.b.c
c, (a+b+c)3-a3-b3-c3=3.(a+b).(b+c).(c+a)
Cho a, b, c > 0. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)≥\(\dfrac{3}{a+2b}+\dfrac{3}{b+2c}+\dfrac{3}{c+2a}\)
Cho a,b,c > 0 . cmr : 1/a + 1/b + 1/c > hoặc = 3/(a + 2b) + 3/(b +2c) + 3/(c + 2a)