cho các số a1+a2=a2+a3=a3+a4=a4+a5=a5+a6=a6+a7=..=a2016+a2017
mà a1+a2+a3+a4+a5+a6+a7+a8+...+a2016+a2017=4032 tìm các số a1,a2,a3,a4,a5,...,a2016,a2017
cho 2017 số nguyên a a1,a2,a3,..,a2017 có tổng bằng 0 và thỏa mãn a1+a2=a3+a4=a4+a5=..=a2015+a2016=a2017+a1=1 .tìm a1,a2,a2017
a1+a2=a3+a4=a5+a6=....=a2016+a2017 và a1+a2+a3+....+a2017=4032
Cho 2016 số nguyên dương a1, a2, a3, ... , a2016 thỏa mãn 1/a1+1/a2+...+1/a2016=30 Chứng minh rằng trong 2016 số dã cho tồn tại ít nhất 2 số bằng nhau
cho 2016 số tự nhiên a1,a2,a3,...,a2015,a2016. Chứng minh rằng trong 2016 số ấy, tồn tại một số chia hết cho 2016 hoặc tồn tại một vài số có tổng chia hết cho 2016
cho 2016 số tự nhiên a1,a2,a3,...,a2015,a2016. Chứng minh rằng trong 2016 số ấy, tồn tại một số chia hết cho 2016 hoặc tồn tại một vài số có tổng chia hết cho 2016
cho 2016 số nguyên dương a1 ;a2;a3;.....2016 thỏa mãn 1/a1+1/a2+...+1/a2016 cmr tồn tại ít nhất hai số bằng nhau
Cho a1;a2;a3;a4;a5;.......;a2015 thuộc N (1;2;3;......;2015 là số thứ tự)
biết a1+a2+a3+.........+a2015=2015*2016
Chứng minh rằng a1^3 +a2^3 +a3^3 +...........+a2015^3 chia hết cho 6
Cho dãy tỉ số bằng nhau: a1/a2=a2/a3=a3/a4=...=a2014/a2015. Cmr ta có dẳng thức:a1/a2015=(a1+a2+a3+...+a2014/a2+a3+a4+...+a2015).