x^2 -2 +1/x^2+x^2+xy+y^2/4=2+xy
(x-1/x)^2+(x+y/2)^2=2+xy
suy ra được min xy=-2 khi x=1,y=-2
x^2 -2 +1/x^2+x^2+xy+y^2/4=2+xy
(x-1/x)^2+(x+y/2)^2=2+xy
suy ra được min xy=-2 khi x=1,y=-2
Cho 2 số x,y thỏa mãn đẳng thức 2x^2+1/x^2+y^2/4=4 Xác định x,y để tích xy đạt GTNN
Cho hai số x , y thỏa mãn đẳng thức\(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4.\)Xác định x , y để tích xy đạt giá trị nhỏ nhất .
Cho x,y là các số khác 0 và thõa mãn: \(\frac{x^2}{y}+\frac{y^2}{x}+2\left(x+y\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{1}{x}+\frac{1}{y}\right)-\frac{2}{xy}=4\) tính S=x+y
Cho 2 số x, y thỏa mãn : \(8x^2+y^2+\frac{1}{4x^2}=4\)
xác định x, y để tích x.y đạt giá trị nhỏ nhất.
Cho x và y là hai số thực khác 0 thỏa mãn: 2x2+\(\frac{y^2}{4}\)+\(\frac{1}{x^2}\)=4
Tìm GTNN, GTLN của A= 2016+ xy
Cho 2 số x, y thỏa mãn : 8x2 +y2 + \(\frac{1}{4x^2}\)= 4
xác định x, y để tích x.y đạt giá trị nhỏ nhất.
Bài 1 : cho x,y thỏa mãn \(xy\ge1.CMR\) \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Bài 2: tìm các số ngyên x,y thỏa mãn : \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)sao cho tích \(x.y\) đạt GTLN
Cho x,y là 2 số dương thỏa mãn xy=2
tìm GTNN của \(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+3y}\)
Cho các số x,y,z thõa mãn đồng thời \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) và \(\frac{2}{xy}-\frac{1}{z^2}=4\). Tính giá trị của biểu thức P = (x + 2y + z)2019