Ta có : \(xy\left(x+y\right)^2\le\frac{1}{64}\)\(\Rightarrow\)\(\sqrt{xy\left(x+y\right)^2}\le\sqrt{\frac{1}{64}}\)
\(\Rightarrow\)\(\sqrt{xy}\left(x+y\right)\le\frac{1}{8}\)
ta cần c/m \(\sqrt{xy}\left(x+y\right)\le\frac{1}{8}\)
Thật vậy, ta có
Áp dụng BĐT : \(ab\le\frac{\left(a+b\right)^2}{4}\). Dấu "=" xảy ra \(\Leftrightarrow\)a = b
\(\sqrt{xy}\left(x+y\right)=\frac{1}{2}.2\sqrt{xy}\left(x+y\right)\le\frac{1}{2}.\frac{\left(x+2\sqrt{xy}+y\right)^2}{4}=\frac{\left(\sqrt{x}^2+2\sqrt{xy}+\sqrt{y}^2\right)^2}{4}.\frac{1}{2}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^4}{8}=\frac{1}{8}\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{4}\)