\(A=\frac{4ab}{a^2-b^2}=\frac{4.\frac{a}{b}}{\left(\frac{a}{b}\right)^2-1}\Leftrightarrow A\left(\frac{a}{b}\right)^2-4\frac{a}{b}-A=0\Leftrightarrow At^2-4t+\frac{4}{A}=A+\frac{4}{A}\)
\(t=\frac{2}{A^2}+-\sqrt{\frac{A^2+4}{A^3}}\)
\(B=\frac{4a^4b^4}{a^8-b^8}=\frac{4t^4}{t^8-1}=..\)
Nhật Minh xem lại đi cậu!
A=\(\frac{2\left(a^2+b^2\right)}{a^2-b^2}\) chứ!
\(A=\frac{2\left[\left(\frac{a}{b}\right)^2+1\right]}{\left(\frac{a}{b}\right)^2-1}\Leftrightarrow\left(\frac{a}{b}\right)^2=\frac{A+2}{A-2}\)
\(B=\frac{2\left[\left(\frac{a}{b}\right)^8+1\right]}{\left(\frac{a}{b}\right)^8-1}=\frac{2\left[\left(\frac{A+2}{A-2}\right)^4+1\right]}{\left(\frac{A+2}{A-2}\right)^4-1}=\frac{2\left[\left(A+2\right)^4+\left(A-2\right)^4\right]}{\left(A+2\right)^4-\left(A-2\right)^4}=.......\)