Đề đúng: \(P=\frac{x^2+12}{x+y}+y\)
\(P=\frac{x^2}{x+y}+\frac{1}{4}\left(x+y\right)-\frac{1}{4}x+\frac{3}{4}y+\frac{12}{x+y}\)
\(\ge x-\frac{1}{4}x+\frac{3}{4}y+\frac{12}{x+y}\)(Áp dụng BĐT Cô-si)
\(=\frac{3}{4}\left(x+y\right)+\frac{12}{x+y}\)
\(\ge2\sqrt{\frac{3}{4}.12}=6\)(Áp dụng BĐT Cô-si 1 lần nữa)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\frac{x^2}{x+y}=\frac{1}{4}\left(x+y\right)\\\frac{3}{4}\left(x+y\right)=\frac{12}{\left(x+y\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow x=y=2\)
Vậy MinP=6 khi và chỉ khi x=y=2
Nguyễn Việt LâmNguyễn Lê Phước ThịnhVũ Minh TuấnBăng Băng 2k6