Cho các số thực a,b,c thoả mãn (a^2)+(b^2)+(c^2)=2 . Tìm giá trị lớn nhất nhỏ nhất cuả biểu thức M=a+b+c-abc
Cho a, b, c là các số dương thỏa mãn a^3 + b^3 + c^3. Tính giá trị biểu thức: M = (a/b - 1) + (b/c - 1) + (c/a - 1)
Cho a,b,c thỏa mãn a+b+c = 0 và ab+bc+ca =0
Tính giá trị của biểu thức A=(a-1)^2+b^2+c(c+1)
Bài 1:Cho a,b là các số nguyên tố thỏa mãn: (a-1) chia hết cho b và (b3 - 1) chia hết cho a.Chứng minh: a= b2+b+1
Bài 2:Cho x,y là hai số thực thỏa mãn:
x3 + y3 +3x2 + 4x + 3y2 +4y +4=0.Tìm giá trị lớn nhất của biểu thức P=1/x+1/y
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
Cho các số thực dương a,b,c. Tìm giá trị nhỏ nhất của biểu thức;
\(Q=\frac{a^3+2}{ab+1}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\)
Cho các số a,b,c thỏa mãn \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2\)và a+b+c=2018
Tính giá trị của biểu thức \(P=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+1\)
cho a và b là hai số thực thỏa mãn 4a2 + b2 = 5ab và 2a>b>0
tính giá trị của biểu thức \(\frac{ab}{4a^2-b^2}\)
Cho a,b,c là các số thực thoả mãn \(\frac{abc}{a+b+c}=3\) . Tìm giá trị nhỏ nhất của biểu thức:
\(M=\frac{3}{a^2+5}+\frac{5}{b^2+3}+\frac{3}{c^2+3}\)