Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Aeris

Cho 2 số dương a, b thỏa mãn: a2012 + b2012 = a2013 + b2013 = a2014 + b2014.

Hãy tính M = 20a + 11b + 2013

Lê Thế Minh
8 tháng 1 2018 lúc 22:33

ta có \(a^{2012}+b^{2012}=a^{2013}+b^{2013}\)

\(\Rightarrow a^{2012}-a^{2013}+b^{2012}_{ }-b^{2013}=0\)

\(\Rightarrow a^{2012}\left(1-a\right)+b^{2012}\left(1-b\right)=0\)\(\left(1\right)\)

tương tự \(a^{2013}+b^{2013}=a^{2014}+b^{2014}\)

\(\Leftrightarrow a^{2013}\left(1-a\right)+b^{2013}\left(1-b\right)=0\)\(\left(2\right)\)

trừ (1) cho (2)

ta có \(\left(a^{2012}-a^{2013}\right)\left(1-a\right)\)\(+\left(b^{2012}-b^{2013}\right)\left(1-b\right)=0\)

\(\Leftrightarrow a^{2012}\left(1-a\right)^2+b^{2012}\left(1-b\right)^2=0\)

\(a^{2012}\left(1-a\right)^2\ge0;b^{2012}\left(1-b\right)^2\ge0\)

\(\Rightarrow a=1;b=1\)

\(\Rightarrow M=20\times1+11\times1+2013=2044\)

Phúc
8 tháng 1 2018 lúc 22:04

lay cai dau tru cai thu 2

xong lay cai thu 2 tru cai thu 3

xong lay ket qua dau tim dc tru ket qua sau la tim dc a=b=1

roi thay vao tinh M la xong

Lê Anh Tú
8 tháng 1 2018 lúc 22:19

Ta có: \(a^{2012}+b^{2012}=a^{2013}+b^{2012}=a^{2014}+b^{2014}\)

\(\Rightarrow a^{2012}+b^{2012}-2\left(a^{2013}+b^{2013}\right)+a^{2014}+b^{2014}=0\)

\(\Rightarrow a^{2012}+b^{2012}-2\left(a^{2013}+b^{2013}\right)+a^{2014}+b^{2014}=0\)

\(\Leftrightarrow\left(a^{1006}-a^{1007}\right)^2+\left(b^{1006}-b^{1007}\right)=0\)

Từ đó ta có 2 TH

\(\hept{\begin{cases}a^{1006}-a^{1007}=0\\b^{1006}-b^{1007}=0\end{cases}\hept{\begin{cases}a=0;a=1\\b=0;b=1\end{cases}}}\)

Vậy P=20.0+11.0+2013=2013

       P=20.1+11.0+2013=2033

       P=20.0+11.1+2013=2024


Các câu hỏi tương tự
Trần Anh Tuấn
Xem chi tiết
an
Xem chi tiết
Nguyễn Đăng Hoàng 	Phong
Xem chi tiết
Law Trafargal
Xem chi tiết
nguyen phuong thao
Xem chi tiết
phan hải thuận
Xem chi tiết
nguyen phuong thao
Xem chi tiết
Anh
Xem chi tiết
shooting star game
Xem chi tiết