\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
Bài 4 (3,5 điểm). Cho ∆ABC cân tại A có đường cao AH và O là trung điểm của AH. Trên tia đối của tia OB lấy điểm D sao cho OD = OB. a) Chứng minh ∆OBH = ∆ODA và AH ⊥ AD.
b) Tia CO cắt đường thẳng AD tại E. Chứng minh A là trung điểm của đoạn thẳng DE
c) AC cắt BD tại I và gọi F là trung điểm của DC. Chứng minh ba điểm E,I,F thẳng hàng
Cho tam giác ABC. Trên tia đối của tia BC lấy M sao cho BM = BA. Trên tia đối tia CB lấy N sao cho CN = CA. Qua M kẻ đường thẳng song song với AB, qua N kẻ đường thẳng song song với AC, chúng cắt nhau tại P.
a) Chứng minh MA là tia phân giác của P M B ^ , NA là tia phân giác của P N C ^ .
b) Chứng minh PA là tia phân giác của M N P ^ .
c) Gọi D là trung điểm AM, E là trung điểm AN, các đường thẳng BD, CE cắt nhau tại Q. Chứng minh QM = QN.
d) Chứng minh ba điểm P, A, Q thẳng hàng.
Cho 2 đoạn thẳng AC=DE và cắt nhau tại trung điểm N của mỗi đoạn.
a) Chứng minh AD
b) Trên tia đối của tia DC lấy điểm B sao cho DB=DC. Chứng minh BD//AE,BD=AE
c) BN cắt CM tại G( M là trung điểm AB) BN cắt CE ở F. Chứng minh CG//AF, CG=AF
d) Gọi I là trung điểm BM. Chứng minh DI>MG
Cho tam giác ABC nhọn (AB<AC).M là trung điểm của BC. Qua A kẻ đường thẳng d song song với BM . Trên d lấy điểm D sao cho AD =BM (M và D khác phía với AB).I là trung diểm của AD
a)Chứng minh AM song song với BD
b)Đường trung trực của BC cắt AC tại E , tia BE cắt đường thẳng d tại F .Chứng minh BF=AC
c)Hai đường thẳng AB và CF cắt nhau tại O . Chứng minh 3 điểm O ,E ,M thẳng hàng
Cho tam giác ABC. Gọi M là trung điểm của AC. Trên tia đối MB lấy điểm D sao cho MD=MB. a) Chứng minh tam giác ABM =tam giácCDM b) Chứng minh AB//CD c) Gọi N là trung điểm của BC. Kéo dài DC cắt AN tại E. Chứng minh rằng C là trung điểm của DE. d) Trên tia đối CA lấy điểm F sao cho CF=CM. Gọi O là trung điểm của EM. Chứng minh B, O, F thẳng hàng
bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.
a, chứng minh tam giác AOM=tam giác BOM
b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD
c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot
bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng
a. ON=OM và AN=BM
b. tia OH là tia phân giác của góc xOy
c. đường thẳng qua B // AC cắt tia DN tại N
chứng minh: tam giác ABM=tam giác CNM
Cho tam giác AOB. Trên tia đối của tia OA lấy điểm C sao cho OC = OA , trên tia đối của tia OB lấy điểm D sao cho OD = OB
1, chứng ming : ∆AOB = ∆COD
2, gọi M là điểm nằm giữa A và B . Tia MO cắt CD tại N . Chứng minh rằng MB = ND
3,Trên tia AB lấy M , trên tia DC lấy N sao cho BM=DN . CMR: M,O,N thẳng hàng
Cho 2 đoạn thẳng AC và BD cắt nhau tại trung điểm O của mỗi đoạn. Trên tia AB lấy điểm M sao cho B là trung điểm AM; Trên tia AD lấy điểm N sao cho D là trung điểm AN. Chứng minh: M, C, N thẳng hàng.