Cho \(a,b,c\in R\)
Thảo mãn : \(\left|a\right|\le1;\left|b\right|\le1;\left|c\right|\le1\) và a+b+c=0
Chứng minh: \(a^{2018}+b^{2019}+c^{2020}\le2\)
Chứng minh rằng với các số a,b thỏa mãn \(\left|a\right|\le1,\left|b\right|\le1\) ta có bất đẳng thức \(\sqrt{1-a^2}+\sqrt{1-b^2}\le2\sqrt{1-\left(\frac{a+b}{2}\right)^2}\)
Cho các số thực a,b,c thỏa mãn \(0\le a,b,c\le1\)và \(a+b+c\ge2\).CMR:
\(ab\left(a+1\right)+bc\left(b+1\right)+ca\left(c+1\right)\ge2\)
Cho 3 số thực a,b,c thỏa mãn:\(1\le a\le2;1\le b\le2;1\le a\le2\).Chứng minh rằng \(a^2+b^2+c^2+ab+bc+ca+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)^3\)
Cho \(1\le a\le2;1\le b\le2\)
Chứng minh rằng \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\le\frac{9}{2}\)
cho \(1\le a,b\le2\)
cm \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\le\frac{9}{2}\)
tìm max \(B=\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)voi0\le a\le b\le c\le1\)
1. Cho a,b,c > 0. CmR: \(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}\le3.\dfrac{a^2+b^2+c^2}{a+b+c}\)
2. Cho \(f\left(x\right)=ax^2+bx+c\) biết rằng: \(\hept{\begin{cases}\left|f\left(0\right)\right|\le1\\\left|f\left(-1\right)\right|\le1\\\left|f\left(1\right)\right|\le1\end{cases}}\)
CmR: a) \(\left|a\right|+\left|b\right|+\left|c\right|\le3\)
b) \(\left|f\left(x\right)\right|\le\dfrac{5}{4}\forall x\in\left[-1;1\right]\)
Cho \(-1\le a\le1\). Tìm GTLN của b sao cho BĐT đúng \(\sqrt{1-a^4}+\left(b+1\right)\left(\sqrt{1+a^2}+\sqrt{1-a^2}\right)+b-4\le0\)