1/a + 1/b + 1/c = 1/a+b+c
=> ( ab + bc + ca ) x ( a + b +c ) = abc
=> ( ab + bc + ca ) x ( a + b ) + ( abc + bcc + cca - abc ) = 0
=> ( ab + bc + ca ) x ( a + b ) + c2 x ( a + b ) = 0
=> ( a + b ) x ( a + c ) x ( b + c ) = 0
=> trong đó a , b đối nhau khi đó vì n lẻ nên
1/a2013 + 1/b2013 + 1/c2013 = 1/c2013 = 1/c2013 + b 2013 + c2013