Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kaneki Ken

Cho 10 số tự nhiên bất kỳ a1 , a2 , .... , a10 . Chứng minh rằng thế nào cũng có 1 số hoặc tổng 1 số các liên tiếp nhau trong dãy trên chia hết cho 10

Ngọc Diệu
29 tháng 3 2021 lúc 19:40

Đặt S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10

Xét 1010 số S1;S2;S3;...:S10S1;S2;S3;...:S10 ta có 2 trường hợp:

(∗)(∗) Nếu có 1 số SkSk nào có tận cùng =0(Sk=a1;a2;...;a10;k=1→10)=0(Sk=a1;a2;...;a10;k=1→10)

⇒⇒ Tổng kk số a1;a2;...;ak⋮10a1;a2;...;ak⋮10

(∗)(∗) Nếu không có số nào trong 10 số S1;S2;...;S10S1;S2;...;S10 tận cùng bằng 00

⇒⇒ Chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau. Ta gọi 2 số đó là Sm;Sn(1≤m<n≤10)Sm;Sn(1≤m<n≤10)

Sm=a1+a2+...+amSm=a1+a2+...+am

Sn=a1+a2+...+am+am+1+...+anSn=a1+a2+...+am+am+1+...+an

⇒Sn−Sm=am+1+am+2+...+an⇒Sn−Sm=am+1+am+2+...+an tận cùng là 0

⇒n−m=am+1+am+2+...+an⋮10⇒n−m=am+1+am+2+...+an⋮10

Vậy a1+a2+...+a10⋮10a1+a2+...+a10⋮10 (Đpcm)


Các câu hỏi tương tự
Nguyễn Minh Hiển
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
NguyễnnThị Phương Anh
Xem chi tiết
Trần Nguyễn Tùng Dương
Xem chi tiết
Nhók Con
Xem chi tiết
Hirari Hirari
Xem chi tiết
Trần Anh
Xem chi tiết
Đức Thuận Nguyễn
Xem chi tiết
Hồ Tiến Đạt
Xem chi tiết
Gokuto
Xem chi tiết