C1: Áp dụng bđt Côsi:
\(B=a+a+\frac{1}{8a^2}+\frac{7}{8a^2}\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8.\left(\frac{1}{2}\right)^2}=5\)
Dấu bằng xảy ra khi \(a=\frac{1}{2}\)
Đề: Cho \(0< a\le\frac{1}{2}\) . Hãy tìm GTNN của \(B=2a+\frac{1}{a^2}\)
\(------------\)
Ta có:
\(B=2a+\frac{1}{a^2}=\left(a+a+\frac{1}{8a^2}\right)+\frac{7}{8a^2}\)
Khi đó, áp dụng bất đẳng thức \(AM-GM\) cho bộ số có ba số thực không âm gồm \(\left(a;a;\frac{1}{8a^2}\right)\) (theo gt)
nên do đó, ta có thể thiết lập bđt đối với biểu thức \(B\) như sau:
\(B\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8a^2}=1\frac{1}{2}+\frac{7}{8a^2}\)
Kết hợp với điều kiện đã cho \(0< a\le\frac{1}{2}\) , ta suy ra được \(\frac{7}{8a^2}\ge\frac{7}{8\left(\frac{1}{2}\right)^2}=3\frac{1}{2}\)
Vậy, \(B\ge1\frac{1}{2}+3\frac{1}{2}=5\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=\frac{1}{2}\)
Vậy, \(B_{min}=5\) khi \(a=\frac{1}{2}\)