Cho biểu thức:
A=\((\frac{1}{2a+b}-\)\(\frac{a^2-1}{2a^3-b+2a-a^2b})\): \((\frac{4a+2b}{a^3b+ab}-\frac{2}{a})\)
a,Rút gọn A
b, Tính giá trị của A biết 4a2+b2 = 5ab và a>b>0
Cho biểu thức: A=\(\left(\frac{1}{2a+b}-\frac{a^2-1}{2a^3-b+2a-a^2b}\right)\times\)\(\left(\frac{4a+2b}{a^3b+ab}-\frac{2}{a}\right)\)
a) Rút gọn A
b) Tính giá trị A biết 4a2+b2= 5ab và a>b>0
Tính giá trị của phân thức\(M=\frac{a+b}{a-b}\)biết rằng 2a^2 + 2b^2 = 5ab và a > b > 0.
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
tính giá trị của biểu thức
Cho \(4a^2+b^2=\text{5ab}\) và \(2a>b>0\) , tính giá trị của A \(=\dfrac{ab}{4a^2-b^2}\)
cho a>b>0 và \(2\left(a^2+b^2\right)=5ab\)
Tính giá trị của biểu thức \(A=\frac{3a-b}{2a+b}\)
1.Biết a-2b=5, hãy tính giá trị của biểu thức :P=(3a-2b)/(2a+5)+(3b-a)/(b-5)
2.Cho a+b+c=0.Tính giá trị của các biểu thức sau:
A=1/(a^2+b^2-c^2)+1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)
Cho a>b>0 và 2(a2+b2)=5ab. tính giá trị biểu thức \(P=\frac{3a-b}{2a+b}\)
Cho 4a2 + b2 = 5ab và 2a>b>0. Tính giá trị của biểu thức M= \(\frac{ab}{a^2-b^2}\)