a)\(\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}+\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
b) \(\frac{x\sqrt{x}-2x+28}{x-3\sqrt{x}+4}+\frac{\sqrt{x}-4}{\sqrt{x}+1}+\frac{\sqrt{x}+8}{4-\sqrt{2}}\)
Rút gọn: \(P=\frac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}-\frac{\sqrt{x}-4}{\sqrt{x}+1}+\frac{\sqrt{x}+8}{4-\sqrt{x}}\left(x\ge0;x\ne16\right)\)
rút gọn.
\(\frac{x\sqrt{x}-2x+28}{x-3\sqrt{x}}-\frac{\sqrt{x}-4}{\sqrt{x}+1}+\frac{\sqrt{x}+8}{4-\sqrt{x}}\)
Tính: a) A= \(\frac{1+2a}{1+\sqrt{1+2a}}+\frac{1-2a}{1-\sqrt{1-2a}}\)với a= \(\frac{\sqrt{3}}{4}\)
b) B= \(\frac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}-\frac{\sqrt{x}-4}{\sqrt{x}+1}+\frac{\sqrt{x}+8}{4-\sqrt{x}}\)với 0 < x khác 16)
Cho biểu thức B=\(\frac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}\)- \(\frac{\sqrt{x}-4}{\sqrt{x}+1}\)+ \(\frac{\sqrt{x}+8}{4-\sqrt{x}}\)
a, Rút gọn B
b,TÌm x để B= \(\frac{-4}{\sqrt{x}+3}\)
c, Tìm x để bthức A= \(\frac{2x+1}{\sqrt{x}+2}\).B đạt gtrị nhỏ nhất
A=\(\frac{x\sqrt{x}-2x-49}{x+3\sqrt{x}-4}-\frac{\sqrt{x}-4}{\sqrt{x}+4}-\frac{2\sqrt{x}+8}{\sqrt{x}-1}\)
Rút gọn A
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Rút gọn các biểu thức sau:
C=\(\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\frac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-3}\)(với \(x\ge0\),\(x\ne4,x\ne9\))
D=\(\left(\frac{\sqrt{x}+2}{x-9}-\frac{\sqrt{x}-2}{x+6\sqrt{x}+9}\right).\frac{x\sqrt{x}-3x-9\sqrt{x}-27}{\sqrt{x}-2}\)(với \(x\ge0,x\ne4,x\ne9\))
Rút gọn
a) \(\left(\frac{2+\sqrt{a}}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right)\left(\frac{a\sqrt{a}-\sqrt{a}-1}{\sqrt{a}}\right)\)
b) \(\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\left(\frac{x\sqrt{x}+2x+4\sqrt{x}-8}{\sqrt{x}}\right)\)