c=1/3+1/3^2+....+1/3^9
1/3*c=1/3^2+1/3^3+...+1/3^10
c-1/3*c=1/3-1/3^10
2/3*c=1/3-1/3^10
c=1/2-2/2^9*2 nhỏ hơn 1/2
Vậy c<1/2
c=1/3+1/3^2+....+1/3^9
1/3*c=1/3^2+1/3^3+...+1/3^10
c-1/3*c=1/3-1/3^10
2/3*c=1/3-1/3^10
c=1/2-2/2^9*2 nhỏ hơn 1/2
Vậy c<1/2
Chứng minh rằng
a, B = \(\frac{1\cdot2-1}{2!}+\frac{2\cdot3-1}{3!}+\frac{3\cdot4-1}{4!}+....+\frac{99\cdot100-1}{100!}< 2\)
c, C = \(\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+\frac{7}{3^2\cdot4^2}+...+\frac{19}{9^2\cdot10^2}< 1\)
CHỨNG MINH:
\(a,A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< 1\)
\(b,B=\frac{1}{3^2}+\frac{1}{9^2}+...+\frac{1}{409^2}< \frac{1}{12}\)
\(c,C=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\) KHÔNG PHẢI LÀ SỐ TỰ NHIÊN
THANKS :33
Chứng minh rằng:
a. \(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+\frac{4}{3^5}+...+\frac{99}{3^{100}}+\frac{100}{3^{101}}< \frac{1}{4}\)
b.\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
c.\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{1}{16}\)
d. \(\frac{1}{5^2}-\frac{2}{5^3}+\frac{3}{5^4}-\frac{4}{5^5}+...+\frac{99}{5^{100}}-\frac{100}{5^{101}}< \frac{1}{36}\)
Chứng minh rằng : C=\(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}< \frac{1}{4}\)
chứng tỏ rằng
C = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}< \frac{1}{3}\)
D = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
chứng minh rằng:
a) A= \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)<1
b)B=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Bài 1: So sánh:
a) 5^255 và 2^512 ( 2 cách)
b) 8^12 và 12^8
Bài 2: Chứng minh rằng:
a) A = \(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{99}<1\)
b) B = \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}<1\)
c) C = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}<\frac{3}{4}\)
Tính nhanh :
\(C=\frac{1}{3}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{57}+\frac{-1}{36}+\frac{1}{15}+\frac{-2}{9}\)
\(D=\frac{1}{2}+\frac{-1}{5}+\frac{-5}{7}+\frac{1}{6}+\frac{-3}{35}+\frac{1}{3}+\frac{1}{41}\)
\(E=\frac{-1}{2}+\frac{3}{5}+\frac{-1}{9}+\frac{1}{127}+\frac{-7}{18}+\frac{4}{35}+\frac{2}{7}\)