Chứng minh rằng \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}< \frac{1}{100}\)
Chứng minh rằng:
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
Chứng tỏ rằng \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}........\frac{9999}{10000}\)
Chứng minh rằng \(C<\frac{1}{100}\)
chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}<\frac{1}{100}\)
Bài 1 : Chứng minh
a) \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
b) \(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{9999}{10000}< \frac{1}{100}\)
Chứng tỏ rằng:C=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
1)Chứng minh các phân số sau là các phân số tối giản:
a)\(A=\frac{12n+1}{30n+2}\)
b)\(B=\frac{14n+17}{21n+25}\)
2)Chứng minh rằng:
a)\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
b)\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
c)\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
CMR \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}......\frac{9999}{10000}<\frac{1}{100}\)