Điều kiện: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(P=\dfrac{x-1}{2\sqrt{x}}:\left(-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}}:\left[-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\right]\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}}.\left[-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)
\(=\dfrac{-\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}{2x\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-\left(\sqrt{x}-1\right)^2}{2x}\)