Cho biểu thức:
A = \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)
Hãy chứng tỏ \(\frac{1}{2}\) < A < 1
Cho biểu thức \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)
Chứng tỏ rằng:
a) \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<2\)
b) \(B=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{39}+\frac{1}{40}.\) Chứng tỏ \(\frac{1}{2}\)< B < 1
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}<\frac{1}{100}\)
Chứng tỏ rằng :
a) \(\frac{11}{15}<\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}<\frac{3}{2}\)
Giúp mik với
Bài 1 :Chứng tỏ rằng :
a) \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)
b) \(3< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
Chứng minh:
\(\frac{7}{12}<\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}<\frac{5}{6}\)
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)
Cho \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{100}\)Chứng mainh:\(1< A< \frac{7}{3}\)
Chứng minh:
\(\frac{3}{5}