Câu 2:Hãy viết số thích hợp vào chỗ … (Chú ý:Nếu đáp số là số thập phân thì phải viết là số thập phân gọn nhất và dùng dấu (,) trong bàn phím để đánh dấu phẩy trong số thập phân)Cho tam giác ABC, AB = 4,8 cm; BC = 3,6 cm; AC = 6,4 cm. Trên cạnh AB lấy điểm E sao cho AE = 2,4 cm, trên cạnh AC lấy điểm D sao cho AD = 3,2 cm. Ta có DE = ? cm
Câu 3:Hãy viết số thích hợp vào chỗ … (Chú ý:Nếu đáp số là số thập phân thì phải viết là số thập phân gọn nhất và dùng dấu (,) trong bàn phím để đánh dấu phẩy trong số thập phân)Cho hình bình hành ABCD, điểm G thuộc cạnh CD sao cho DG=1/3DC . Gọi E là giao điểm của AG và BD. Tính DE:DB.
Câu 4:Hãy viết số thích hợp vào chỗ … (Chú ý:Nếu đáp số là số thập phân thì phải viết là số thập phân gọn nhất và dùng dấu (,) trong bàn phím để đánh dấu phẩy trong số thập phân)Hình thang ABCD vuông góc tại A và D, AD = 15 cm; CD = 9 cm. Gọi M làmột điểm trên cạnh AD biết rằng MB = 5 cm, MC = 15 cm
Câu 5:Hãy viết số thích hợp vào chỗ … (Chú ý:Nếu đáp số là số thập phân thì phải viết là số thập phân gọn nhất và dùng dấu (,) trong bàn phím để đánh dấu phẩy trong số thập phân)Cho tam giác ABC có AB=3cm, AC=5cm, đường phân giác AD. Qua D kẻ song song với AB cắt AC ở E. Tính độ dài AE.
câu 2
+) vì AB = 4,8 CM, AE = 2,4 cm => \(\frac{AE}{AB}\)= \(\frac{1}{2}\)
+) vì AC = 6,4CM , AD = 3,2 cm => \(\frac{AD}{AC}=\frac{1}{2}\)
xét tam giác AED và tam giác ABC có
chung góc Â
\(\frac{AE}{AB}=\frac{AD}{AC}\left(=\frac{1}{2}\right)\)
=> tam giác ADE đồng dạng với tam giác ACB
=> \(\frac{ED}{CB}=\frac{AE}{AB}=\frac{1}{2}\)
=> \(\frac{ED}{3,6}=\frac{1}{2}\)
=> ED = 1,8 CM
CÂU 3
vì ABCD là hình bình hành => AB = CD
MÀ DG = 1/3 DC
=>DG = 1/3 AB
ta có AB // CD => AB // DG
=>\(\frac{DG}{AB}=\frac{DE}{EB}\)(=\(\frac{1}{3}\))
=> \(\frac{DG}{DG+AB}=\frac{DE}{DE+EB}=\frac{1}{1+3}\)
=>\(\frac{DG}{GD+AB}=\frac{DE}{DB}=\frac{1}{4}\)
HAY \(\frac{DE}{DB}=\frac{1}{4}\)