cho ba số a, b, c thỏa mãn abc = 27 và 1/a+1/b+1/c = (a+b+c)/9 Chứng minh (a*2020-9*1010)(b*2020-9*1010)(c*2020-9*1010)=0
Câu 19: Cho a, b, c là các số thực sao cho:
( a+b+c)(ab+bc+ca)=2020 và abc=2020.
Tính P=(b2c+2020)(c2a+2020)(a2b+2020).
Cho các số thực a,b,c thỏa mãn:
\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=6\)
Tính giá trị của bt \(B=a^{2020}+b^{2020}+c^{2020}\)
Cho các số thực a,b,c thỏa mãn:
\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=6\)
Tính giá trị của biểu thức \(B=a^{2020}+b^{2020}+c^{2020}\)
cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020
Cho a,b,c thỏa mãn a+b+c=3, ab+bc+ca=3, tính A=(a-1)2019+(b2-1)2020+(c3-1)2021
Cho \(a,b,c,d\ne0\)và \(c\ne d,c\ne-d\). Chứng minh rằng:
Nếu ad=bc thì \(\left(\frac{a+b}{c+d}\right)^{2020}=\frac{a^{2020}-b^{2020}}{c^{2020}-d^{2020}}\)
cho a,b,c thỏa mãn đồng thời a+b+c=6 và a^2+b^2+c^2=12
tính:\(P=\left(a-3\right)^{2020}+\left(b-3\right)^{2020}+\left(c-3\right)^{2020}\)
a ) cho a/b = c/d cm a-b/a=c-d/c
b ) cho a+2019/a-2019 = b + 2020 /b-2020 cm a/b = 2019/2020