Câu 1 :Có : P(x) = 0 khi x = 1
=> a.12 + 5.1 -3 = 0
=> a + 5 - 3 = 0
=> a = -2
Vậy a = -2
Câu 1 :Có : P(x) = 0 khi x = 1
=> a.12 + 5.1 -3 = 0
=> a + 5 - 3 = 0
=> a = -2
Vậy a = -2
Tìm b,biết rằng đa thức f(x) = bx^2 - bx + 2 có một nghiệm x = -1
Cho 2 đa thức: f(x) = (x+1).(x-1)
g(x)= x^3+ax^2+bx+2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
1, Cho hai đa thức :
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)\\ g\left(x\right)=x^3+ax^2+bx^2+2\)
Xác định a và biết nghiệm của đa thức f(x) và nghiệm của của đa thức g(x) bằng nhau.
2, CMR : Đa thức P(x) có ít nhất 2 nghiệm. Biết :
\(\left(x-6\right)\cdot P\left(x\right)=\left(x+1\right)\cdot P\left(x-4\right)\)
3, Cho đơn thức bậc hai \(\left[P\left(x\right)=ax^2+bx+c\right]Biết:P\left(1\right)=P\left(-1\right)\\ CMR:P\left(x\right)=P\left(-3\right)\)
4, CMR: Nếu a + b +c = 0 thì đa thức
\(A\left(x\right)=ax^2+bx+c\) có một trong các ngiệm là 1.
Cho đa thức f(x)=\(ax^2+bx+1\) tìm a,b biết đa thức có hai nghiệm x=1, x=\(\dfrac{1}{2}\)
1. Cho đa thức
f(x)= ax+b
g(x)=bx+a
a) Xác định f(x) biết f(1)=2 và f(-2)=4
b)C/m nếu x0 là nghiệm của f(x) thì \(\dfrac{1}{x_0}\) là nghiệm của g(x)
2.Cho đa thức
f(x)=ax2+bx+c (a khác 0)
biết f(1)=f(-1)
C/m f(x)=f(-x) với mội x
Cho hai đa thức sau: f(x) = (x – 1)(x + 2) và g(x) = x3 + ax2 + bx + 2 Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
1)Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.
2)Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.
Cho đa thức: f(x) = x3 + ax2 + bx – 2
Xác định a, b biết đa thức có 2 nghiệm là x1 = -1 và x2 = 1.
1.Cho đa thức f(x)=ax2 + bx + c với a, b, c là các hệ số nguyên. Chứng minh: f(x) + f(-x) ⋮ 2 với mọi số nguyên x .
2.Cho đa thức P(x)=ax+b (a, b ∈ Z;a ≠0). Chứng minh rằng:/P(2018) - P(1)/ ≥ 2017
3.Cho đa thức f(x) =2x2 + 3x +1.Chứng tỏ f(2n) - f(n) ⋮ 3.
4.Cho đa thức f(x) = 5x+1. Với 2 số a và b (a<b).
5.Cho đa thức f(x) = ax + b với a≠0, a ϵ Z. Chứng tỏ rằng /f (2017) - f(1)/ ≥ 2016.
giúp mình với!!!