Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Điền

Câu 1: Cho x, y>0 thỏa x+y=1

CMR: \(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}\ge\frac{1}{4}\)

Câu 2: Cho a,b,c,d >0 thỏa a+b+c+d=4

CMR: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\ge2\)

Con Chim 7 Màu
4 tháng 3 2019 lúc 10:33

câu 1.Ta có:

\(\frac{x^2}{x+3y}+\frac{x+3y}{16}\ge2\sqrt{\frac{x^2}{x+3y}.\frac{x+3y}{16}}=\frac{x}{2}\)

\(\frac{y^2}{y+3x}+\frac{y+3x}{16}\ge2\sqrt{\frac{y^2}{y+3x}.\frac{y+3x}{16}}=\frac{y}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{x+y+3x+3y}{16}\ge\frac{x+y}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{1}{4}\ge\frac{1}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}\ge\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\left(đpcm\right)\)

Câu 2:

điều kiện \(a^2+b^2+c^2+d^2=4\)(đúng ko)

Ta có:

\(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{1}{a^2+1}.\frac{a^2+1}{4}}=1\)

\(\frac{1}{b^2+1}.\frac{b^2+1}{4}\ge2\sqrt{\frac{1}{b^2+1}.\frac{b^2+1}{4}}=1\)

\(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge2\sqrt{\frac{1}{c^2+1}.\frac{c^2+1}{4}}=1\)

\(\frac{1}{d^2+1}+\frac{d^2+1}{4}\ge2\sqrt{\frac{1}{d^2+1}.\frac{d^2+1}{4}}=1\)

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}+\frac{a^2+b^2+c^2+d^2+4}{4}\ge4\)

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\ge4-\frac{8}{4}=2\left(đpcm\right)\)

Trần Điền
4 tháng 3 2019 lúc 13:34

Bạn ơi 2 dòng cuối ở câu 2 mình chưa hiểu lắm, làm sao để mất \(a^2+b^2+c^2+d^2\)được vậy?

Phùng Minh Quân
8 tháng 3 2019 lúc 21:05

đề đúng \(a+b+c+d=4\)

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}+\frac{a^2+b^2+c^2+d^2+4}{4}\ge4\) ( đến đây là đúng nhé ) 

Có \(\frac{a^2+b^2+c^2+d^2+4}{4}\ge\frac{\frac{\left(a+b+c+d\right)^2}{4}+4}{4}=\frac{\frac{4^2}{4}+4}{4}=\frac{8}{4}=2\)

\(\Rightarrow\)\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\ge4-2=2\) ( đpcm ) 

Phùng Minh Quân
8 tháng 3 2019 lúc 21:11

à quên còn dấu "=" xảy ra nữa nhé 

Câu 1 : \(x=y=\frac{1}{2}\)

Câu 2 : \(a=b=c=d=1\)


Các câu hỏi tương tự
Hiếu Lê
Xem chi tiết
Nguyễn Tuấn Hào
Xem chi tiết
Huy Lê
Xem chi tiết
Nấm Nấm
Xem chi tiết
Nguyễn Tuấn Hào
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
Xem chi tiết
Nấm Nấm
Xem chi tiết
Orochimaru
Xem chi tiết