Trả lời:
P/s: Học kém Hình nên chỉ đucợ mỗi câu a
a, +Xét tam giác ABM và ACM có:
AB=AC(Giả thiết) --
AM là cạnh chung) I =>tam giác ABM=ACM (C-C-C)
~Học tốt!~
Trả lời:
P/s: Học kém Hình nên chỉ đucợ mỗi câu a
a, +Xét tam giác ABM và ACM có:
AB=AC(Giả thiết) --
AM là cạnh chung) I =>tam giác ABM=ACM (C-C-C)
~Học tốt!~
cho \(\Delta\)ABC ,có AB=AC. Gọi M là trung điểm của cạnh BC.
a, c/m \(\Delta ABM=\Delta ACM\) và AM\(\perp\)BC.
b,Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. c/m : MD = ME.
c, Gọi N là trung điểm của DB . Trên tia đối của tia NM lấy điểm K . sao cho NK = NM. Chứng minh các điểm K, D, E thẳng hàng.
Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB
a) Chứng minh: DB=DM
b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)
c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng
Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE
a) Chứng minh: DA=DE
b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)
c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng
Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))
a) Chứng minh: HB=HC
b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân
Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)
a) Chứng minh: \(\Delta ABD=\Delta AED;\)
b) BE là đường trung trực của đoạn thẳng AD
c) Gọi F là giao điểm của hai đường thẳng AB và ED Chứng minh BF=EC
Cho tam giác ABC vuông tại A ( AB < AC).Tia phân giác của B cắt AC tại M.
Kẻ MD vuông góc với BC tại D.
a) Chứng minh tam giác BAD cân.
b) Chứng minh BM là đường trung trực của đoạn thẳng AD.
c) Kéo dài AB và MD cắt ngau tại E. Chứng minh tam giác MEC cân .
d) Chứng minh AD // EC.
Cho tam giác ABC vuông tại A ( AB < AC).Tia phân giác của B cắt AC tại M.
Kẻ MD vuông góc với BC tại D.
a) Chứng minh tam giác BAD cân.
b) Chứng minh BM là đường trung trực của đoạn thẳng AD.
c) Kéo dài AB và MD cắt ngau tại E. Chứng minh tam giác MEC cân .
d) Chứng minh AD // EC.
Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC.
a) Chứng minh: AM ⊥ BC và MA = MC.
b) Lấy điểm D trên đoạn thẳng AB (D khác A và B), đường thẳng vuông góc với MD tại M cắt AC tại E. Chứng minh: MD = ME.
c) Chứng minh: MD + ME ≥ AD + AE.
Cho tam giác ABC cân tại A =700 . AM là tia phân giác góc A
a) CM BM=CN b)Từ M kẻ MD\(\perp\)AB (D\(\varepsilon\)AB) kẻ ME \(\perp\)AC (E\(\varepsilon\)AC ) . CM tam giác MDE là tam giác cân
c) CM DE // BC
d) Trên tia đối tia ME lấy điểm K sao cho ME = MK. Tính số đo góc MDK
Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.
Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.
Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC
Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC. Từ M kẻ MD vuông AB, ME vuông AC (D thuộc AB, E thuộc AC). Chứng minh rằng:
a) ABM = ACM.
b) AM vuông BC.
c) AMD = AME và DE//BC.
Cho tam giác ABC có AB=AC gọi M là trung điểm của BC
a) Chứng minh rằng: \(\Delta ABM=\Delta ACM\)
b)Từ M kẻ MH\(\perp\)AC tại H. Trên tia đối của tia HM lấy điểm D sao cho H là trung điểm của MD. CHứng minh rằng CA là tia phân giác của \(\widehat{MCD}\)
c) Đường thẳng qua H và song song vs AD cắt Cd tại E. Chứng minh rằng: HE\(\perp\)CD
Mong các bn giúp đỡ nha^_^ ( hai ý đầu mik lm đc òi còn ý c thoy mong các sư huynh sư tỷ giúp đợ ạ)^_^^