Người ta cắt một tờ giấy hình vuông có cạnh bằng 2 để gấp thành một hình chóp tứ giác đều sao cho bốn đỉnh của hình vuông dán lại thành đỉnh của hình chóp. Tính cạnh đáy của khối chóp để thể tích của nó lớn nhất.
Một tấm nhôm hình vuông cạnh 10cm, người ta cắt ở bốn góc của tấm nhôm đó bốn tam giác cân bằng nhau (xem hình vẽ), mỗi tam giác cân có chiều cao bằng x, rồi gấp tấm nhôm đó dọc theo đường nét đứt để được một hình chóp tứ giác đều. Tìm x để khối chóp nhận được có thể tích lớn nhất.
A. x = 4
B. x = 2
C. x = 1
D. x = 3 4
Từ một miếng bìa hình vuông có cạnh bằng 5, người ta cắt 4 góc bìa 4 tứ giác bằng nhau và gập lại phần còn lại của tấm bìa để được một khối chóp tứ giác đều có cạnh đáy bằng x (xem hình vẽ bên). Cho chiều cao khối chóp tứ giác đều này bằng 5 2 . Tính giá trị của x
A. x = 1
B. x = 2
C. x = 3
D. x = 4
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng a 2 . Mặt phẳng (P) qua A và vuông góc với SC cắt SB, SC, SD lần lượt tại E, I, F. Tính tỉ số k giữa thể tích hình chóp S.AEIF và thể tích hình chóp S.ABCD.
A. k = 1 4
B. k = 1 3
C. k = 1 6
D. k = 2 9
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a 3 và SA=SB=SC=SD= a 2 . Tính thể tích khối chóp S.ABCD.
A. 2 a 3 6
B. 2 a 3 2
C. 3 a 3 3
D. 6 a 3 6
Thể tích khối chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh 2a, tâm O, SO = 3a (tham khảo hình vẽ bên) bằng
A. 6 a 3
B. 4 a 3
C. 2 a 3
D. 12 a 3
Cho hình chóp tứ giác đều S.ABCD . Đáy hình vuông cạnh a, cạnh bên tạo với đáy một góc 60 o . Gọi M là trung điểm SC.Mặt phẳng đi qua AM và song song với BD, cắt SB tại E và cắt SD tại F. Tính thể tích khối chóp S.AEMF.
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông tâm O cạnh 2a. Thể tích khối chóp S.ABCD bằng 4 a 3 . Tính khoảng cách từ điểm O tới mặt bên của hình chóp.
Cho khối chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, đường cao SO. Biết SO = a 2 2 thể tích khối chóp S.ABCD bằng:
A. a 3 2 6
B. a 3 2 3
C. a 3 2 2
D. a 3 3 4