Ta có thiết diện qua trục của hình nón là tam giác vuông cân SAb, cạnh huyền A B = a 2
Vậy đường cao, bán kính và đường sinh của hình nón là:
Diện tích xung quanh và diện tích toàn phần của hình nón là:
Ta có thiết diện qua trục của hình nón là tam giác vuông cân SAb, cạnh huyền A B = a 2
Vậy đường cao, bán kính và đường sinh của hình nón là:
Diện tích xung quanh và diện tích toàn phần của hình nón là:
Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng a √2
Cho dây cung BC của đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón góc 60 o .Tính diện tích tam giác SBC.
Cắt hình nón bởi một mặt phẳng qua trục ta được thiết diện là một tam giác vuông cân có cạnh huyền bằng 2a. Tính diện tích xung quanh của hình nón đó
Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân, cạnh huyền bằng a 2 . Thể tích khối nón là:
A. π 2 6 a 3
B. π 2 12 a 3
C. π 2 4 a 3
D. π 2 12 a 2
Cắt một hình nón bằng một mặt phẳng đi qua trục của nó ta được thiết diện là một tam giác vuông cân có cạnh huyền bằng a, diện tích xung quanh của hình nón đó là:
Cắt một hình nón bằng một mặt phẳng đi qua trục của nó ta được thiết diện là một tam giác vuông cân có cạnh huyền bằng . Diện tích xung quanh của hình nón là:
Cắt hình nón bởi một mặt phẳng đi qua trục ta được thiết diện là một tam giác vuông cân có cạnh huyền bằng a 6 . Tính thể tích V của khối nón đó.
Cắt hình nón (N) đỉnh S cho trước bởi mặt phẳng qua trục của nó, ta được một tam giác vuông cân có cạnh huyền bằng 2 a 2 . Biết BC là một dây cung đường tròn của đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng đáy của hình nón một góc 60 ° . Tính diện tích tam giác SBC.
Cắt hình nón bởi một mặt phẳng qua trục của nó ta được thiết diện là một tam giác vuông cân với cạnh huyền bằng a 2 . Tính thể tích V của khối nón
Cắt hình nón đỉnh S cho trước bởi mặt phẳng đi qua trục SO của nó ta được một tam giác vuông cân có cạnh bên độ dài bằng a. Tính diện tích của mặt cầu nội tiếp hình nón đã cho.