Khi sản xuất vỏ lon sữa bò hình trụ có thể tích là V, các nhà thiết kế luôn đặt mục tiêu sao cho chi phí nguyên liệu làm vỏ lon sữa bò là ít nhất, tức là diện tích toàn phần của hình trụ là nhỏ nhất. Muốn thể tích khối trụ bằng V và diện tích toàn phần hình trụ nhỏ nhất thì bán kính đáy bằng bao nhiêu?
A. r = V π 2 3
B. r = V 3
C. r = V 2 π 3
D. r = V 2 3
Một công ty sữa cần sản xuất các hộp sữa dạng hình hộp chữ nhật có đáy là hình vuông chứa được thể tích thực là 180 m l . Chiều cao của hình hộp bằng bao nhiêu để nguyên liệu sản xuất vỏ hộp là ít nhất.
Một nhà sản xuất cần thiết kế một thùng sơn dạng hình trụ có nắp đậy với dug tích là 20 lít. Cần phải thiết kế thùng sơn đó với bán kính nắp đậy là bao nhiêu (cm) để nhà sản xuất tiết kiệm được vật liệu nhất?
Khi sản xuất vỏ lon sữa bò hình trụ, các nhà thiết kế đặt mục tiêu sao cho chi phí nguyên liệu làm vỏ hộp ít nhất (diện tích toàn phần của lon nhỏ nhất). Bán kính đáy của vỏ lon là bao nhiêu khi muốn thể tích của lon là 314 c m 3 .
A. r = 314 4 π 3 c m
B. r = 942 2 π 3 c m
C. r = 314 2 π 3 c m
D. r = 314 π 3 c m
Một nhà máy sản xuất bột trẻ em cần thiết kê bao bì cho một loại sản phẩm mới dạng khối trụ có thể tích 1 d m 3 . Hỏi phải thiết kế hộp đựng này với diện tích toàn phần bằng bao nhiêu để tiết kiệm nguyên vật liệu nhất
Cần phải thiết kế các thùng dạng hình trụ có nắp đựng nước sạch có dung tích V ( c m 3 ). Hỏi bán kính R (cm) của đáy hình trụ nhận giá trị nào sau đây để tiết kiệm vật liệu nhất?
Một nhà máy sản xuất nước ngọt cần làm các lon dựng dạng hình trụ với thể tích đựng được là V. Biết rằng diện tích toàn phần nhỏ nhất thì tiết kiệm chi phí nhất. Tính bán kính của lon để tiết kiệm chi phí nhất.
Từ một nguyên liệu cho trước, một công ti muốn thiết kế bao bì đựng sữa với thể tích 100ml3. Bao bì được thiết kế bởi một trong hai mô hình là: hình hộp chữ nhật có đáy là hình vuông và hình trụ. Hỏi thiết kế theo mô hình nào tiết kiệm nguyên vật liệu nhất ?
Người ta muốn dùng vật liệu bằng kim loại để gò thành một thùng hình trụ tròn xoay có hai đáy với thể tích V cho trước ( hai đáy cũng dùng chính vật liệu đó). Hãy xác định chiều cao h và bán kính R của hình trụ theo V để tốn ít vật liệu nhất.