Ta có:
\(P=x^3+y^3+26xy\)
Vì: x + y = 26
\(P=x^3+y^3+\left(x+y\right)xy\)
\(P=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)xy\)
\(P=\left(x+y\right)\left(x^2+y^2\right)\)
\(P=26\left(x^2+y^2\right)\)
Mà \(x^2+y^2\ge0\left(\forall x,y\inℝ\right)\)
=> x^2 + y^2 đạt giá trị nhỏ nhất khi x = y = 13
Vậy MinP = 26(13^2 + 13^2) = 8788
\(P=x^3+y^3+26xy\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+26xy\)
\(=26\left(x^2-xy+y^2\right)+26xy\)
\(=26\left(x^2+y^2\right)\)
Lại có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{26^2}{2}\)
\(\Rightarrow P\ge26.\frac{26^2}{2}=8788\)
Dấu = xảy ra khi x=y=13