Tìm GTNN của biểu thức: P=a-2căn ab +3b-2 căn a + 1
cho a,b,c là 3 số thực không âm thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c)
tính a/1+căn 2 +a/ căn 2+căn 3 +a/căn 3+căn 4
cho a+b+c < căn 3. Tìm Max M = a/căn (a^2+1) +b/căn (b^2+1) + c/căn ( c^2+1)
1. Rút gọn biểu thức
\(\sqrt{\dfrac{4}{3}}+\sqrt{12}-\dfrac{4}{3}\sqrt{\dfrac{3}{4}}\)
2. Đưa thừa số vào trong dấu căn :
a. \(\left(2-a\right)\sqrt{\dfrac{2a}{a-2}}\) với a lớn hơn 2
b. với 0 bé hơn x, x bé hơn 5. \(\left(x-5\right)\sqrt{\dfrac{x}{25-x^2}}\)
c. Với 0 bé hơn a, a bé hơn b \(\left(a-b\right)\)\(\sqrt{\dfrac{3a}{b^2-a^2}}\)
cho a, b, c>0 và a+b+c=6
Tìm GTNN của P=1/căn(a+b)(b+c)+1/căn(b+c)(c+a)+1/căn(c+a)(a+b)
Cho căn(a) + căn(b) + căn(c) >=3 căn 2 (a,b,c>0)
Tìm Min của S= căn bậc 3 của(a^2+1/b^2) + căn bậc 3 của(b^2+1/c^2) + căn bậc 3 của(c^2+1/a^2)
Em xin chân thành cảm ơn ạ!
Cho a, b, c là độ dài 3 cạnh của một tam giác bất kì, chứng minh rằng: căn a, căn b, căn b cũng tạo thành 1 tam giác