\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2003}{2004}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2003\cdot2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2003}{2004}\)
\(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ ...+ \(\frac{1}{2003.2004}\)
= 1 - \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+...+ \(\frac{1}{2003}\)- \(\frac{1}{2004}\)
= 1 - \(\frac{1}{2004}\)
= \(\frac{2003}{2004}\)
=
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(\Leftrightarrow A=1-\frac{1}{2004}\)
\(\Leftrightarrow A=\frac{2003}{2004}\)
sorry Doraeiga nha
mk k cho SKT_NTT rùi