Thông thường thì ko có cách biến đổi cụ thể, phải tùy thuộc vào hiệu này âm hay dương mới biến đổi được, ví dụ nếu biết \(x_1-x_2\ge0\) thì ta có thể biến nó thành \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
Thông thường thì ko có cách biến đổi cụ thể, phải tùy thuộc vào hiệu này âm hay dương mới biến đổi được, ví dụ nếu biết \(x_1-x_2\ge0\) thì ta có thể biến nó thành \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
cách biến đổi x1^2 - x2^2 để có thể áp dụng viet
cách biến đổi (x1^2 + x2^2) để áp dụng vào vi ét ?
Cách biến đổi x1^2 - x2^2 để áp dụng vào định lí vi-et?
cho pt x^2-ax+1=0.giả sử pt có 2 nghiệm x1,x2.tính giá trị biểu thức S=x1^5+x2^5 theo a
Giải phương trình
x 2 - 3 x + 6 x 2 - 9 = 1 x - 3
Bằng cách điền vào các chỗ trống (…) và trả lời các câu hỏi.
- Điều kiện: x ≠ …
- Khử mẫu và biến đổi, ta được: x2 – 3x + 6 = … ⇔ x2 – 4x + 3 = 0.
- Nghiệm của phương trình x2 – 4x + 3 = 0 là: x1 = …; x2 = …
Hỏi x1 có thỏa mãn điều kiện nói trên không ? Tương tự, đối với x2 ?
Vậy nghiệm của phương trình đã cho là:....
Giải phương trình
x 2 − 3 x + 6 x 2 − 9 = 1 x − 3
Bằng cách điền vào các chỗ trống (…) và trả lời các câu hỏi.
- Điều kiện: x ≠ …
- Khử mẫu và biến đổi, ta được: x 2 – 3 x + 6 = … ⇔ x 2 – 4 x + 3 = 0 .
- Nghiệm của phương trình x 2 – 4 x + 3 = 0 l à : x 1 = … ; x 2 = …
Hỏi x 1 có thỏa mãn điều kiện nói trên không ? Tương tự, đối với x 2 ?
Vậy nghiệm của phương trình đã cho là:....
Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Tìm điều kiện của x để các biểu thức sau có nghĩa và biến đổi chúng về dạng tích: x 2 - 4 + 2 x - 2