Cho tam giác ABC có A(1; 3; 5), B(-4; 0; -2), C(3; 9; 6). Gọi G là trọng tâm tam giác ABC. Trong những khẳng định dưới đây, khẳng định nào sai?
A. Tọa độ của điểm G là (0;4;3)
B. AG ⊥ BC
C. Phương trình tham số của đường thẳng OG là: x = 0, y = 4t, z = 3t
D. Đường thẳng OG nằm trong hai mặt phẳng: (P): x = 0, (Q): 3y - 4z = 0
Cho hai tam giác $A B C$ và $A_{1} B_{1} C_{1}$ có cùng trọng tâm $\mathrm{G}$. Gọi $G_{1}, G_{2}, G_{3}$ lần lượt là trọng tâm tam giác $B C A_{1}, A B C_{1}, A C B_{1}$. Chứng minh rằng $\overrightarrow{G G_{1}}+\overrightarrow{G G_{2}}+\overrightarrow{G G_{3}}=\overrightarrow{0}$
Tam giác ABC có trọng tâm G, độ dài các cạnh BC, CA, AB lần lượt là a, b, c. Khi đó ABC là tam giác đều nếu có điều kiện nào sau đây?
A. a G A → + b G B → + c G C → = 0 →
B. a G A → + b G B → - c G C → = 0 →
C. a G A → - b G B → + c G C → = 0 →
D. - a G A → + b G B → + c G C → = 0 →
Cho ba điểm di động A( 1-2m; 4m) ; B( 2m; 1-m) và C( 3m-1; 0). Gọi G là trọng tâm tam giác ABC thì G nằm trên đường thẳng nào sau đây:
A. y- x= 1
B. y= 2x+ 1
C. y= x+1/3
D. y= x+ 2
Cho tam giác đều ABC cạnh a, G là trọng tâm của tam giác. Khẳng định nào sau đây là đúng?
A. A G → = a 3 2
B. A G → + B G → = a
C. A G → + B G → + C G → = 0
D. A G → + B G → + C G → = 0 →
Cho tam giác ABC Và G là trọng tâm tam giác.Nếu tam giác GBC vuông tại G thì khẳng định nào sau đây đúng?
A. a2 = b2 + 2c2
B. 3b2 = a2 + c2
C. 5a2 = b2 + c2
D. Tất cả sai
Cho ba điểm A(4; 3), B(2; 7) và C(-3; -8).
a, Tìm tọa độ trọng tâm G và trực tâm H của tam giác ABC;
b, Gọi T là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh T, G và H thẳng hàng.
c, Viết phương trình đường tròn ngoại tiếp tam giác ABC.
Cho tam giác ABC có trọng tâm G và điểm M là trung điểm BC. khẳng định đúng là: A. Vt GA = 2 vt GM B. Vt GA = -2 vt GM C. Vt GM = 1/3 vt MA D. Vt AB + vt AC= vt AM Giải nhanh giúp em với ạ
Cho tam giác ABC có trọng tâm G và trung tuyến AM. Khẳng định nào sau đây là đúng?
A. G A → = 2 G M →
B. 3 M A → + M B → + M C → = M G →
C. G A → + G B → + 2 G C → = 0 →
D. A M → = - 3 M G →