Số phức z nào dưới đây là nghiệm phương trình (1+i) z 2 - ( 2 - i ) z ¯ + i - 2 = 0 ?
A. z = 4
B. z = 1 + i
C. z = -2i
D. z = 2 - i
Số phức z nào dưới đây là nghiệm của phương trình: ( - 1 + i ) z 4 - 3 ( 2 - i ) z 2 + ( 16 i + 2 ) = 0
A. z = i
B. z = -i
C. z = i + 1
D. z = 5
Số phức z nào dưới đây thỏa mãn (2-i) z 2 + ( 4 + 3 i ) z - 5 ( 1 - i ) = 0 ?
A. z = i
B. z = 1 + i
C. z = 1 - i
D. z = 1
Số phức z nào dưới đây là nghiệm phương trình (1-i) z 4 - 3 i z ¯ + 7 - i = 0 ?
A. z = i
B. z = 2 + 3
C. z = 1-i
D. z = 1+i
Tìm các số thực a,b,c để phương trình (ẩn z) z 3 + a z 2 + b z + c = 0 nhận z = 1 + i và z = 2 làm nghiệm
Cho phương trình z 3 + a z 2 + b z + c = 0 nhận z = 2 và z = 1 + i làm các nghiệm của phương trình. Khi đó a - b + c là
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(1+i) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(i+1) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(1+i) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Số phức z=a+bi, a,b thuộc R là nghiệm của phương trình ( z - 1 ) ( 1 + i z z - 1 z = i . Tổng T=a^2+b^2 bằng
A. .
B. .
C.
D. .