Hệ số của y trong hai phương trình của hệ (II) đối nhau (có tổng bằng 0)
Hệ số của y trong hai phương trình của hệ (II) đối nhau (có tổng bằng 0)
Bài 1 Cho hệ phương trình mx+4y=10-m và x+y=4
a, giải hệ phương trình khi m= căn 2
b, giải và biện luận hệ phương trình đã cho theo tham số m
c, trong trường hợp hệ có nghiệm duy nhất (x;y) tìm các giá trị của m để:
i, y-5x=-4. ii, x<1 và y>0
Bài 2: Cho hệ phương trình 2x+3y=m và 2x-3y=6 (m là tham số không âm)
a, giải hệ phương trình với m=3
b, tìm các giá trị của m để nghiệm (x;y) của hệ phương trình thoả mãn điều kiện x>0, y>0
Cặp số (x; y) = (1; 3) là nghiệm của hệ phương trình bậc nhất hai ẩn nào trong các hệ phương trình sau:
A. x - y = - 2 x + y = 4
B. 2 x - y = 0 x + y = 4
C. 2 x + y = 4 x + y = 4
D. x 2 + y 2 = 10 x - y = 2
Cặp số (x; y) = (1; 3) là nghiệm của hệ phương trình bậc nhất hai ẩn nào trong các hệ phương trình sau:
A. x − y = − 2 x + y = 4
B. 2 x − y = 0 x + y = 4
C. x + y = 4 2 x + y = 4
D. x 2 + y 2 = 10 x − y = 2
Cho hệ phương trình :
\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\)
a) Giải hệ phương trình theo tham số m.
b) Trong trường hợp hệ phương trình có nghiệm duy nhất (x, y). Tìm các giá trị của m để x + y = -1.
a) Giải hệ phương trình: \(\left\{{}\begin{matrix}\frac{2}{x}+y=3\\\frac{1}{x}-2y=4\end{matrix}\right.\)
b) Cho parabol (P): \(y=-\frac{1}{6}x^2\). Tìm tọa độ các điểm thuộc Parabol có tung độ y=-9.
c) Cho \(a=\sqrt{11+6\sqrt{2}},b=\sqrt{11-6\sqrt{2}}\). Chứng minh rằng a, b là hai nghiệm của một phương trình bậc hai với hệ số là số nguyên.
cho hệ phương trình mx-y=2
3x+my=5( m là tham số)
xác định các giá trị của tham số m để hệ phương trình có nghiệm duy nhất(x;y) thỏa mãn x+y=3/m2+3
Cho hệ phương trình: a2x + y = 1 và x + y = a
a, giải hệ phương trình với a = -2
b, tìm các giá trị của a để hệ phương trình có vô số nghiệm
c, tìm a để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x,y đều nguyên
cho hệ: \(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
a)Giải và biện luận
b) trong trường hơp hệ phương trình có nghiệm duy nhất (x;y), gọi A(x;y) là điểm tương ứng với nghiệm (x;y) của phương trình.
I)Chứng minh A luôn năm trên 1 đường thẳng
II) Tìm các giá trị của m để A thuộc góc phần tư thứ nhất
III) Xác định giá trị của m để A thuộc dường tròn có tâm là gốc toạ đô và bán kính = \(\sqrt{5}\)
Viết phương trình đường thẳng (d) có hệ số góc bằng -1/2 và đi qua giao điểm của hai đường thằng (d1): y = x + 3; (d2): y = 2x - 1