a,
ĐKXĐ: x - 4 \(\ne\)0 <=> x \(\ne\)4
\(\sqrt{x}-2\ne0\)<=> \(\sqrt{x}\ne2\)<=> x \(\ne\)4
\(\sqrt{x}+2\ne0\)<=> \(\sqrt{x}\ne-2\)(loại)
P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)
= \(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{ \left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{x-4}{2\sqrt{x}}\)
= \(\dfrac{\sqrt{x}\left(\sqrt{x}+2+\sqrt{x}-2\right)}{x-4}.\dfrac{x-4}{2\sqrt{x}}\)
= \(\dfrac{\sqrt{x}.2\sqrt{x}.\left(x-4\right)}{\left(x-4\right).2\sqrt{x}}\)
= \(\sqrt{x}\)
b,
Để P > 4
<=> \(\sqrt{x}\)>4
<=> x > 16