Bài 1: Tìm 6 SNT thỏa mãn \(p_1^2+p_2^2+p_3^2+p_4^2+p_5^2=p_6^2\)
Bài 2: Tìm SNT p để \(\frac{p+1}{2}\)và \(\frac{p^2+1}{2}\)là số chính phương
Bài 3: Tìm tất cả các cặp số nguyên dương (a,b) thỏa mãn đồng thời 2 điều kiện 4a+1 và 4b-1 nguyên tố cùng nhau; a+b là ước của 16ab+1
Giả sử p là số nguyên tố ; a,b là các số nguyên và \(\frac{1}{p}=\frac{1}{a}+\frac{1}{b}\). Tìm tất cả các số p và a hoặc b là những số chính phương
HELPPPPP.....! Các BẠN ơi!
Cho a,b,c>0. TÌM MIN
\(S=\frac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\frac{\sqrt{y^2-yz+z^2}}{y+z+2x}+\frac{\sqrt{z^2-zx+x^2}}{z+x+2y}\)
Tìm các số nguyên tố p sao cho có thể viết \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\)với a,b là các số nguyên dương
Câu 1:tìm số nguyên tố p để \(4p^2+1\) và \(6p^2+1\) là các số nguyên tố
Câu2:CMR nếu x,y,z >0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\) thì: \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Cho m, n là các số tự nhiên và p là số nguyên tố thõa mãn: \(\frac{p}{m-1}=\frac{m+n}{p}\). Chứng minh rằng khi đó n+2 là số chính phương.
1.Tìm số chính phương có 4 chữ số mà 3 chữ số cuối cùng giống nhau
2.Có tồn tại hay ko các số chính phương a và b sao cho a-b=2014
3.Có tồn tại hay ko hai số 2^n-1 và 2^n+1(n>2)đồng thời là các số nguyên tố
4.CMR:Số A có dạng 3^n+4 ko thể là số chính phương
Ai làm đc mình tick cho
1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)
CMR: \(P⋮2003\)
2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)
3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)
4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)
5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)
6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là một số nguyên tố
7.Tìm tất cả các số nguyên tố P sao cho tổng của tất cả các ước số tự nhiên của các phương trình là 1 số chính phương
8. Biết P và \(8p^2-1\)cũng là số nguyên tố
9. Tìm tất cả các số nguyên tố có 4 chữ số \(\overline{abcd}\)sao cho \(\overline{ab}\)và\(\overline{ac}\)là các số nguyên tố và \(b^2=\overline{cd}+b-c\)
10.Cho \(\overline{abc}\)là 1 số nguyên tố. CM phương trình: \(ax^2+bx+c=0\)không có nghiệm hữu tỉ
Cho phương trình: \(\frac{3a+1}{a+x}-\frac{a-1}{a-x}=\frac{2a\left(a^2-1\right)}{x^2-a^2}\)( với a là tham số )
a, Giải phương rình trên.
b, Tìm các giá trị nguyên dương của a để phương trình có nghiệm x là số nguyên tố