Các bạn giúp tớ bài này với
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Ai làm được mk cho 3 tick luôn
Cần gấp mai học rùi nha
Kéo dài BI cắt AK tại D. Ta chứng minh \(BD\perp AK\).
Từ I kẻ \(IM\perp AB;IN\perp BC\)
Ta có ngay \(\Delta BIM=\Delta BIN\) (Cạnh huyền góc nhọn)
\(\Rightarrow BM=BN\)
Kéo dài tia AK cắt BC tại P.
Ta có \(\Delta AIM=\Delta PIN\left(g-c-g\right)\Rightarrow AM=PN\)
Vậy thì ta có AB = AM + MB = PN + NB = BP.
Suy ra tam giác ABP cân tại B.
Xét tam giác cân ABP có BD là phân giác đồng thời đường cao. Vậy \(BD\perp AK\)
Ta thấy HJ và HK là phân giác hai góc kề bù nên chũng vuông góc.
Xét tứ giác JDKH có \(\widehat{JDK}+\widehat{JHK}=90^o+90^o=180^o\)
Vậy JDKH là tứ giác nội tiếp. Hay \(\widehat{JKH}=\widehat{JDH}\)
Xét tứ giác BHDA có \(\widehat{ADB}=\widehat{AHB}=90^o\) nên BHDA là tứ giác nội tiếp.
Suy ra \(\widehat{BDH}=\widehat{BAH}\)
Mà \(\widehat{BAH}=\widehat{BCA}\) (Cùng phụ với góc \(\widehat{ABC}\) )
Vậy nên \(\widehat{JKH}=\widehat{BCA}\)
Xét tam giác ABC và tam giác HJK có:
\(\widehat{BAC}=\widehat{JHK}=90^o\)
\(\widehat{BCA}=\widehat{JKH}\)
\(\Rightarrow\Delta ABC\sim\Delta HJK\left(g-g\right)\)
Cô giải đúng rùi nhưng em chưa học tứ giác nội tiếp đường tròn
Nhưng dù sao cũng cảm ơn cô