Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen pham truong thinh

Các bạn giúp mình với!!!!

Đa thức P(x) chia cho x-1 được số dư là 4 chia cho x-3 thì được số dư là 14 tìm số dư của phép chia P(x) : (x-1)(x-3)

Cô Hoàng Huyền
1 tháng 11 2017 lúc 10:31

Do đa thức (x - 1)(x - 3) là đa thức bậc hai nên đa thức dư khi chia cho nó sẽ có dạng ax + b

Đặt \(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b\)

Ta có :

\(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b=\left(x-1\right)\left(x-3\right)g\left(x\right)+a\left(x-1\right)+\left(a+b\right)\)

\(=\left(x-1\right)\left[\left(x-3\right)g\left(x\right)+a\right]+\left(a+b\right)\)

Do P(x) chia (x - 1) dư 4 nên a + b = 4

\(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b=\left(x-3\right)\left(x-1\right)g\left(x\right)+a\left(x-3\right)+\left(3a+b\right)\)

\(=\left(x-1\right)\left[\left(x-1\right)g\left(x\right)+a\right]+\left(3a+b\right)\)

Do P(x) chia (x - 3) dư 14 nên 3a + b = 14

Vậy nên ta tìm được a = 5, b = -1 hay đa thức dư là 5x - 1.


Các câu hỏi tương tự
Nguyễn Thị Lệ Hằng
Xem chi tiết
TFboys_Lê Phương Thảo
Xem chi tiết
sakura haruko
Xem chi tiết
sakura haruko
Xem chi tiết
w1daniel
Xem chi tiết
Lê Anh
Xem chi tiết
Nguyen Van Viet Cuong
Xem chi tiết
Huy Vũ Danh
Xem chi tiết
Trần Thị Thu Hường
Xem chi tiết