a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.
ta co:(6x+11y) chia het cho 31
<=>6x+11y+31y cung chia het cho 31
<=>6x+42y chia het cho 31
<=>6(x+7y) chia het cho 31 (nhan phan phoi)
vi 6(x+7y) chia het cho 31 => x+7y theo toan phan 6(x+7y) chia het cho 31
2)
3a+5b = 8c => 3a-3c = 5c-5b => 3(a-c) = 5(c-b)
đã có a # c # b; 3 và 5 nguyên tố cùng nhau, từ (*) ta phải có:
a-c chia hết cho 5 và c-b chia hết cho 3 cũng thấy -9 ≤ a-c ≤ 9
a-c = -5 ; (*) => c-b = -3 => c-a = 5 và b-c = 3
cộng lại theo vế => b-a = 8 => a = 1, b = 9 => c = 4 ; ta được số 194
a-c = 5; (*) => c-b = 3
cộng lại => a-b = 8 => a = 8, b = 0, c = 3 hoặc a = 9, b = 1, c = 4
ta có thêm 2 số: 803 và 914